This website is not affiliated with or endorsed by the Wikimedia Foundation, the nonprofit that maintains Wikipedia and manages the Wikipedia trademark.

Views until June 2015 for desktop come from stats.grok.se and include bot pageviews, while those from July 2015 are from the Wikimedia REST API and exclude identifiable bots and spiders (but may still end up counting many views by bots and spiders as legitimate human views). Views for mobile web, mobile app, desktop spider, and mobile web spider are from the Wikimedia REST API and available starting July 2015. Mobile web and mobile app views from July 2015 onward exclude identifiable bots, and "desktop spider" and "mobile web spider" are basically all the bots/spiders (excluding Wikipedia's own, which get identified as bots).

Permalink URL: https://wikipediaviews.org/displayviewsformultiplemonths.php?tag=Pages+created+by+Vipul+Naik+in+2006&allmonths=allmonths&language=en&drilldown=desktop

MonthViews of page Creamy layerViews of page Quasiconvex functionViews of page FIITJEEViews of page Kishore Vaigyanik Protsahan YojanaViews of page SiruseriViews of page SIPCOT IT ParkViews of page Subjective units of distress scaleViews of page TeynampetViews of page Perfect setViews of page C. S. SeshadriViews of page Institute for Financial Management and ResearchViews of page Madhya Pradesh Bhoj Open UniversityViews of page Old Mahabalipuram RoadViews of page Madhya KailashViews of page State Industries Promotion Corporation of Tamil NaduViews of page ReachbackViews of page Bhaskaracharya PratishthanaViews of page Association of Mathematics Teachers of IndiaViews of page Residually finite groupViews of page Tube lemmaViews of page Cremona groupViews of page Norm (group)Views of page Harmonic polynomialViews of page Afterburn (psychotherapy)Views of page National Mathematics Talent ContestViews of page National Board for Higher MathematicsViews of page Extremally disconnected spaceViews of page Supersolvable groupViews of page Component (group theory)Views of page National Standard Examination in PhysicsViews of page National Standard Examination in ChemistryViews of page Locally finite groupViews of page Factor of automorphyViews of page Jeanne SaferViews of page Slender groupViews of page Orthocompact spaceViews of page Metacompact spaceViews of page Indian Association of Physics TeachersViews of page Pseudocompact spaceViews of page Perfect coreViews of page Door spaceViews of page Pronormal subgroupViews of page Bitopological spaceViews of page T-group (mathematics)Views of page Retract (group theory)Views of page Rational representationViews of page Pure subgroupViews of page Critical groupViews of page FC-groupViews of page Shrinking spaceViews of page Characteristically simple groupViews of page Riemann formViews of page Malnormal subgroupViews of page Absolutely simple groupViews of page Locally Hausdorff spaceViews of page SQ-universal groupViews of page Ascendant subgroupViews of page Cotorsion groupViews of page Toronto spaceViews of page Abnormal subgroupViews of page Radical polynomialViews of page Hemicompact spaceViews of page Resolvable spaceViews of page Collectionwise Hausdorff spaceViews of page Imperfect groupViews of page Power automorphismViews of page Realcompact spaceViews of page Complemented groupViews of page Polynormal subgroupViews of page Paranormal subgroupViews of page Fully normalized subgroupViews of page Volterra spaceViews of page Grosshans subgroupViews of page A-paracompact spaceViews of page CA-groupViews of page Capable groupViews of page Contranormal subgroupViews of page Class automorphismViews of page Seminormal subgroupViews of page Transitively normal subgroupViews of page Parafree groupViews of page Supercompact spaceViews of page Alternating mapViews of page Pseudonormal spaceViews of page Mathematical Olympiad CellViews of page Mesocompact spaceViews of page Centrally closed subgroupViews of page Paranormal spaceViews of page Feebly compact spaceViews of page Algebraically compact groupViews of page Metanilpotent groupViews of page CN-groupViews of page Weakly normal subgroupViews of page Stability groupViews of page Observable subgroupViews of page CEP subgroupViews of page IA automorphismViews of page Strictly simple groupViews of page Conjugate-permutable subgroupViews of page Semipermutable subgroupViews of page Special abelian subgroupViews of page Conjugacy-closed subgroupViews of page C-normal subgroupViews of page Thin group (combinatorial group theory)Views of page Representation rigid subgroupTotalPercentage
2019083.6K2.3K1K2.3K3829331K31451451136613812422155715512176198160141721658520214615695533314069731894125581667832481558523557402550345032332553501729322634451919112749221417102013254517141211281316361528172241814112561596991851221167019K0.4
2019072.9K1.9K1K1.7K479974934370549444408175118196601179115982231831494920578271128177159602710779524494048729290325422685236744313394460474224503322342936453420171914603923209211625481824151427201645202517319191610327171491114184518216018K0.4
2019064.1K2.2K1K1K3678049443295525173431689325039514276552071941577419113115810012712260159291681.2K312764646223391152663864572244755129331736411430191738612220121932461969912163214101681112193361617217165123052458861410827145018K0.4
2019053.6K2.9K1.3K9093978751.2K406777435427169127243287169100342362662178825610380921471157427761026210831378766885149283892447256203849675744205040173528304140281519283857221919121621381116272018202239103411520161194010241591772291229289019K0.4
2019045.5K3.2K1.5K9714067581.3K51286134147013212523429316311551231203151113246891071311791268816711028192283279568438841670803969791947597552392947431836203358552617161766321551614132562222116101820164415162142513281241623111013101831432209021K0.4
20190321K3.6K1.6K7804127891.3K475908377500135117236339162105323032101701042569921011917116966116186861094225784278317320741195080511631586066411730331729183046382015122632262022121015143317192220241327461337135291312104310187877279925406037K0.8
2019025.5K3.1K1.6K6904627191K419820420536109102246420163813623223015410822010272981461105783610569604013665775364324604740514737394339373818373315243024475238151221253189718151929161920827171941141393192315155572721615111766332215020K0.4
20190119K3K1.5K76542379191952575944165512310624337617213847217205196992338186119134117631942887511531216566752739277249387543303759454035183523193922254149241217203328171120221917362217161212131628161615523251411456321581231631116377034K0.7
2018123.8K3K1.9K9013866611K45388048836416994256361152113421752191671022658774189141108551473738413750455953942844505480457169274380555738212827213725265356331830295743201718212421351814221627163034541921719222812351126171318723129273312019K0.4
2018113.6K3.8K1.8K1.4K3846301.2K597882371346169106194281196948122721515310224064130127132121562075907416550205598102424355688559694619347358495210382825284241304916189184637132314171119412917262414121451232014544181464910271681232371438263020K0.4
2018103.9K5.4K1.9K1.2K4166511.2K4611.1K447406225116203329184117572583231577030395971171931615915521047510740216563149326760617838675022414576494814545519282088435029171116313523211412151935162219161422195010211332521964410471161162081420245023K0.5
2018096.9K4.7K1.1K1.1K4357671K4588904783831598920046920980782152191479720085174242114945626102906239931195411758295415424030483317465249443993148192818253738272012154323720822913489161715141114291117111231312112983210792161823229024K0.5
2018086.2K2.5K9962.2K5891.1K1K73363954443325010622163323113299166146263821557719519710290605012910268209392883135616237205046354742172852464333925371820233950403015151324221621102015213514161422171112277151361912101629317136781871317195023K0.5
2018074.6K2K1.2K2.5K4741.1K1.1K551681526437305882604492091931221611251466312010022621610910863271177360172422866847240421841514672422137574952252330391229204642241717101940291412161111284122922151211172710151311721171127629910661181247169020K0.4
20180612K2.5K1.5K1.8K4598101K4468055694391921051883691981051002181621641021459913816012512246299310675593932646582314017534538638523407445555817336812343024433822258253235161882214174617161411181912241124159121114132671314713420611312013028K0.6
2018057.1K3.1K1.9K2.1K4888521.3K41989458254130211819335521310261274256215107225901491121411385921979268497039806410144612568605184683037524857602148422451203942523623252855642023136816325621242021171530332029272027161915469442112151025925413316025K0.5
2018045.3K3.3K1.3K2K4437711.3K3591.2K465518251112193337227733623425321710019310996871131258121701169098453274647547523968636076714146523984521934861628994961592130132750381627202412233914302612211730522035131627171584215301214128161022342411023K0.5
20180325K3.7K1.1K1.5K4057051.3K4511.3K398669209131260332286865523524316714620911711484193159673210210395132325413360823271225751559244213865344444193741154650284765452974248341019162919383116121681522234421527251432171614438212113761771423295042K0.9
20180230K3.3K9131.3K4176821.2K4411.2K4097361651383213602361074325721121310114492100122108123751657107571253631615961316123773244593327424845573721304117363229292531291126312415231514141643191317918141534212271019161112423229131131146252311046K1
2018018.2K3.3K1.2K1.6K4728111.1K4681.2K55987520417130236923212279286207212154217135181137168131931613510587106128691281331185963472061115383813878839580663168627345455352445938293363624245295034438534413540313955423033292553392126911944282525223319281225329028K0.6
2017125.5K3K1.4K1.4K5007889543991.1K5465791902173443321871496623325117310717012016012315115172231141049287574992131874359338261416956226145625748236711735374451413735451515454225351429204353243824231314274722542227482126123762821121412351012383414022K0.5
2017116.1K4.1K1.4K2.7K5001K1.3K4381.1K4265372743352553603011225429424322110423611317614816316983461391169511047329618910828652865804883502142536652661642523550354857432929181326128243615282024402030342618102333162716132513161236133213151311201011383416026K0.6
2017107.2K5.8K1.1K2.3K5108251.2K4261.6K537436246738277465277131962402802141111838821397167192832886871348034351007511751951870835365562458376849391955401529442434423122182949441324927271646182126121916274216331112201717945942201012672316332112029K0.6
2017096.2K4.9K1.1K1.4K5168751K3861.3K506452338810273373271173712421801817716596225132162135674015454767847307818010044552063535451461641415055521538311229261646503416183129371616111218193723141713151722362124211122179173272010171712111017241517025K0.5
20170810K2.5K8993.9K5849671K683726526502347802326343282161155178156128981439841016510793513616195567937265317767313918634339454517524137543314363816322625372830141222352510151022192037121823121811242413381410161316143711211211661351025206029K0.6
2017075.9K1.9K9903K5981K1K529729528562254732331431312267140187115110100133104391207107122471910382559641268712358173724424643573822495742583717284526272719245429142013452623164201313372412161915221437113514623131114194241061189512231516023K0.5
2017068.1K2.5K1.1K2.2K46997196054998254460324268829138834014498228146143104162116206152118132582012470528149266678783241286463357847435659415741202136264429374232242327384632312515371824352417191720222525193214153016201342102825161827111618352210025K0.5
2017057.5K3.1K1.3K2.8K5131K1.3K6091.1K6677762477382944053021545725521914913420510576123132144821890130736342356466853041204969427047384861563852304056154838255345272816234560162010191916543811191116231741193715111816181055929161120101281020349027K0.6
2017046.5K3.3K1.5K2.8K4809411.4K43094055280133372537435629413868262207199137172105901221841297314929289883931745183443916654851615832526160453315513618304125423627261623524491517291817452019111328142333152516162615108738141297318101234166026K0.5
2017039.7K3.8K8132.2K6381.2K1.5K68696373182939187431152139232379340258242153223136134126133137882311812287785849100681434164241067059737741506280766429508027384533415739323627864516241630242689292425202736393125343218362824237411281113161217131744249031K0.7
20170210K3.5K3231.8K5141.1K1.2K3K861503917223657279435323349593101981931162109313510713213772463969619743327944119335714844464555226425144504819364319303227464521172017403516161420152047151425151810134220261082718211244825111114566718259031K0.6
2017019.3K3K1.6K2.1K5131.2K1.1K7019005981.1K221930300426307213802151692271311701141411491531546210183107861084735971019544342485604647681947605257482234413434403736492837223743341524122323303625252325231927472637221538231619359331916151216111221257029K0.6
2016126K3K1.5K2K6051.2K1K7.5K855607694212781292457280321832562571571301951321301121511907114695105891025253107971222463327670485566317076565062214852284766424746383832364760283120412631252941303425293433373429243634212137142624202819212016404811033K0.7
2016116.2K4.9K1.4K3.2K5981.3K1.4K5211K589534234774375609313299792812811921112191291391481641667324211890948974356218397327225838148606224436968703910433920373628464129351526593613241226101538201822112413232433022161025171512401425101219718131237328029K0.6
2016108.1K5.8K1.4K3K5221K1.3K7761.2K6995142159512894483003301282392642201382001182141191521367412698105961223526605798323919716264527025457259535119364319336433364925232123284523231220192125161526141220301561227211926151119389221171671011830339032K0.7
20160910K5.1K1.4K2.4K6391.3K1.2K6531.1K591505261879388415251222102204164172101346177177140148155787763031081041143930751837532383270545962553237546156452451401828583847473030183043302018182127226028171322261943221213418172819191544122219171523161017251912034K0.7
2016089.7K2.7K1.1K6.5K7321.6K976689667789527221955463641353326309290200114781391093731511321095952620888721033939561225632533950663655681741354741351733481728283630323126343232201435161920134120242719112135421430171813169123272181323767623316034K0.7
20160711K1.8K1.2K5K6121.3K89567457277659618887235644822836526921913616583120128283222102114731689812574100583566877024483239484635371536665145361629342330305244292723261736242127221610829352526182021163393519122417127445191115199138622238032K0.7
20160615K2.4K1.5K3K6681.9K1.1K560637719702220837316448237211842571782121061731181641181371615210910180771253022545070255514484247447821375363493416505119243123354730181922493712912251514311211121713132929142781024192193691916188987924197035K0.7
20160518K3K1.7K3K6591.4K1.4K1.3K7976237091.1K93035241723116772300221165921951351131561461816714293998822741266453862848286937455760183655514551173967352731384449231719333247182610221420452319231412183058253611824131314397231913128173827237041K0.9
20160412K3.1K1.8K2.8K6561.6K1.5K693917