This website is not affiliated with or endorsed by the Wikimedia Foundation, the nonprofit that maintains Wikipedia and manages the Wikipedia trademark.

Views until June 2015 for desktop come from stats.grok.se and include bot pageviews, while those from July 2015 are from the Wikimedia REST API and exclude identifiable bots and spiders (but may still end up counting many views by bots and spiders as legitimate human views). Views for mobile web, mobile app, desktop spider, and mobile web spider are from the Wikimedia REST API and available starting July 2015. Mobile web and mobile app views from July 2015 onward exclude identifiable bots, and "desktop spider" and "mobile web spider" are basically all the bots/spiders (excluding Wikipedia's own, which get identified as bots).

Permalink URL: https://wikipediaviews.org/displayviewsformultiplemonths.php?tag=Pages+created+by+Vipul+Naik+in+2006&allmonths=allmonths&language=en&drilldown=mobile-web

MonthViews of page Creamy layerViews of page Kishore Vaigyanik Protsahan YojanaViews of page FIITJEEViews of page TeynampetViews of page SIPCOT IT ParkViews of page Quasiconvex functionViews of page State Industries Promotion Corporation of Tamil NaduViews of page Institute for Financial Management and ResearchViews of page Madhya Pradesh Bhoj Open UniversityViews of page Subjective units of distress scaleViews of page SiruseriViews of page Perfect setViews of page Madhya KailashViews of page Old Mahabalipuram RoadViews of page National Mathematics Talent ContestViews of page C. S. SeshadriViews of page National Board for Higher MathematicsViews of page Indian Association of Physics TeachersViews of page National Standard Examination in ChemistryViews of page Association of Mathematics Teachers of IndiaViews of page National Standard Examination in PhysicsViews of page Tube lemmaViews of page Bhaskaracharya PratishthanaViews of page Jeanne SaferViews of page ReachbackViews of page Residually finite groupViews of page Afterburn (psychotherapy)Views of page Supersolvable groupViews of page Cremona groupViews of page Bitopological spaceViews of page Extremally disconnected spaceViews of page Harmonic polynomialViews of page Norm (group)Views of page CA-groupViews of page Door spaceViews of page Pseudocompact spaceViews of page Component (group theory)Views of page Metacompact spaceViews of page Locally finite groupViews of page T-group (mathematics)Views of page Factor of automorphyViews of page Characteristically simple groupViews of page Shrinking spaceViews of page FC-groupViews of page SQ-universal groupViews of page Rational representationViews of page Realcompact spaceViews of page Pure subgroupViews of page Slender groupViews of page Hemicompact spaceViews of page Toronto spaceViews of page Mathematical Olympiad CellViews of page Radical polynomialViews of page Riemann formViews of page Abnormal subgroupViews of page CN-groupViews of page Malnormal subgroupViews of page Locally Hausdorff spaceViews of page C-normal subgroupViews of page Alternating mapViews of page Cotorsion groupViews of page Perfect coreViews of page Complemented groupViews of page Retract (group theory)Views of page Paranormal spaceViews of page Pronormal subgroupViews of page Stability groupViews of page Orthocompact spaceViews of page A-paracompact spaceViews of page Resolvable spaceViews of page Transitively normal subgroupViews of page Ascendant subgroupViews of page Conjugacy-closed subgroupViews of page Critical groupViews of page Supercompact spaceViews of page Capable groupViews of page Pseudonormal spaceViews of page Contranormal subgroupViews of page Collectionwise Hausdorff spaceViews of page Seminormal subgroupViews of page Paranormal subgroupViews of page Conjugate-permutable subgroupViews of page Absolutely simple groupViews of page Power automorphismViews of page Feebly compact spaceViews of page Polynormal subgroupViews of page Fully normalized subgroupViews of page Algebraically compact groupViews of page Imperfect groupViews of page Parafree groupViews of page Volterra spaceViews of page Class automorphismViews of page Special abelian subgroupViews of page IA automorphismViews of page Mesocompact spaceViews of page Centrally closed subgroupViews of page Grosshans subgroupViews of page Metanilpotent groupViews of page Weakly normal subgroupViews of page CEP subgroupViews of page Observable subgroupViews of page Strictly simple groupViews of page Thin group (combinatorial group theory)Views of page Semipermutable subgroupViews of page Representation rigid subgroupTotalPercentage
20190514K7.4K6.4K7941K1.2K9261.1K1.1K79549257947198306554230155276110432461049591115836167557970333458384332453451214623525028151522102931141317223417114911221189138104716234191161151957729364311104220312041K2.2
20190419K6.8K6.7K8738701.3K1.2K1.1K945849495708454953553152101662391073217579102911049791849064694669346053502651434049236344181821508112915201315335918317141861619102781488869117214615410559207437321307721008045K2.4
20190344K4.5K5K8121K1.4K1.1K1.2K7311.1K526701598985664532151711471153420578938411199641169881584256867738812652404542244537163018587153024913203038224217209914171112101434222372797109955691115231691287332012067K3.6
20190217K3.3K3.9K8219061.1K1.5K1.1K4907654505625151142565201668913181223537669881157483701286569355051572740294242323712382817121922219261812192218291140159599752510173512532441441868103612355362100311623416036K1.9
20190148K3.7K6K9751K1.1K1.6K1.2K472664572603511127364609235165142165412861642051051085973957357664672306266343535234554133720301834241115142320261518102116981510211162561229103685166321087762315644605038420120071K3.8
20181211K4.7K7.5K9579461.3K1.1K722412598547486535145319669226152200154241661371737990835357534864414529385032253728342917122154171316522152310178151513102011164942081864106632879171518845116674424251032263034K1.9
20181111K7.7K5.7K1.3K8961.5K979717576747486602387114397531228389293221921679620792767891462048716029548927483935263437232518531710173119203020221810281412161020111413769196101089284451247104578297233136523341037K2
20181013K4.8K8.2K6729212.1K1.5K6801K741579874482100406703193161162188372031238169886479742666414842385442383943264028182527122314182114152315162423471810102516791728866119754746729268786457514136023513039K2.1
20180920K4.6K5.2K7321.2K2K1.7K6428437826627105759977360525644431025077122912709688845387384554354739382721363334312121192020232127818192913191221132271181777331464661112935374114162579244520032632151045K2.4
20180820K13K4.6K1.2K1.4K9802.1K8041.2K65177060856410181372226972649827916713713326371755861953355485543254940674235341827282421291412271412291137152722212211152319810118771085431471245179671184713466503244243352053K2.9
20180716K15K5K8791.3K7101.3K9581.2K7126725865421211.1K816524278314228117134196256816710063527643435064623410236293430232623312471316231912103127141591312101112143022101076581357411145558497967105546431622210141050K2.7
20180630K8.8K7K7191.1K8391K1.1K9876126755124651076179683802683322541071241637483786375545262325556594029332433361637332514152715161013182111121597141016201537712235666215126117885455757664526512302110058K3.1
20180519K11K7.3K7061K1.1K1.1K9831.6K727693523498131401753231150297821202111265087809869662952434810850455234575234262035252716182217112011279291912131761716175151139251121158668446484547211331134084324930051K2.7
20180417K11K6.2K6088901.3K1K1.3K1.5K6825626534451234193721941422379671151110978776883648585053447937317233474426261323262115141613631715121410121422129351610125911608106622472332422664812443711211232620047K2.5
20180344K6.2K4.4K6791.1K1.2K9901.2K6566606827195071213053962081322001223916711895107106745369838261476253564454423233133226212712182016201919265191612231297199974912671085681151125251187742776845122021331067K3.6
20180249K4.3K3.8K6379931.1K9201.4K43458156557066395265415198156161772912010086767074544860932939425340443823282814181721147152311127513815222718106128681011116653713652784523453206523023233010030068K3.7
20180118K5K5.3K6699901.1K8831.5K81161355256469712345762627823322116048161122849573605541119485045813445423228342620201614181719211424201916132428614994121014103134851101293192449434120968018453101210040K2.2
20171213K5.1K6K6731.1K1.2K826887849540610519783132595601275542304218721601649985628484681005035414150483431282820311020825282419208910128198129101012111085146710465344751021044301635501013600211140037K2
20171114K9.9K5K7321K1.4K8998751.1K686759590443595455434253807482149911871269210094696860373860532349664224262513351432121729272326132014121212891117916813143477661495921116524333467851112120100030042K2.3
20171014K7.3K4.8K5369912.1K1.1K7078677257068924591.4K605445238283171240361901025011775626451683252353142614143282719281922121521272215231614106148810512161215111119134310349253154507232040423001220242032041K2.2
20170915K3.8K4.8K5291K2.1K1K6467465855886525751.5K5995163307663881561261281674011684464939334129433436436634193921151510161181881214821614107731116243167126551110222428732340215031342031022123211038K2
20170822K11K3.9K8181.1K9288336831.1K5476074766111.1K1.4K436335465348488881101125110861586838392227453518264025323210211028179511513111624135388256185448114036533244037652264342064050040020100051K2.7
20170716K10K4.1K6031.2K6679569189815547024506031.2K1.5K449552284274322364716194112847044353729273845273033223031181612129121211104102610712918465513211161439556141336714055330105615134020041014001043K2.3
20170618K6.8K4.4K7791.1K7429351K8975336235334069757135082951722232282687136739581424535383331302628363228252014241919232312177145187132101115345510726611126125174459268366311120315252211202501041K2.2
20170515K7.1K5K7541.1K9819331.1K92364865052446290526541521594197149291526538848751574748463449531031341735161916132013861511881515171261798592147615561076648842635611507421354161211210112039K2.1
20170411K8.6K5.3K6409731.1K8141.1K1.2K6425454717791.1K27925317794162134713210750122557162564460393924233124133631211733131081823714191582271112172849122658115350637813345124161141154330200020210037K2
20170313K5K2.3K9951.2K1.1K9161.1K1.2K6637035544361.1K346244247791461247106104711308474964362454445323629492726212623252315152113158111915171381493126671045452866673428411526223123142141411001300033K1.8
20170212K3.5K8725.3K1.2K1.2K7349926506436433974541K27231817769124891369154196108826245463229433633453125252620236131714820451271126353916101416851152314315139510536385533113832383320232530030201032K1.7
2017019.8K3.8K4.2K1.3K1.2K8926981.1K5055876003474741.1K3353891751341571041268311350977069465073365527194523351821242018131610951181063089122896221413151451068564214736115452124932242604351112021210029K1.6
2016128.6K4.3K4.1K15K1.2K831679642706474589377436857314412211240173122258178146671077152824242533030851311934202114301735141587136301111161118756125771053537681156552425113332125116102202001120042K2.2
2016117K7.4K3.3K7491.1K1.3K8364926165165544434208552722951564522847553112312369968173655540452730163833281522183438202815109171311146911231710106381575117102839115151762243621152627564201001020000029K1.6
2016107.5K5.7K3.2K1.2K1K2K662427564567578481383879355321139105981602391391287992766362584345452315302929321117352922121412131510128118771412142311685135233131451072532330512107302650223010113000028K1.5
2016099.7K3.9K3.2K9381.2K1.8K5734466365245963765028173572641723864011121.4K777666806772433538436818191426323217211525121581871091291612141867931617398771043741162334114213126421431131020421110030K1.6
20160811K12K2.6K8441.6K7899135604204667143025358978453371831762684997231821337687102693225143721361413513192171129161213115611184485144561258832254052491214316510403501401421002000100038K2
20160714K9.8K2.6K9311.4K3968535484824846062944101K494392388851612702244692765841644144312325211423101714211523251216169910153114548815523988105553286552154501132216401132100030140011037K2
20160617K4.8K3.5K8151.5K65658577844351468632734089920836223676125113192104955168676541321331433023221120182916132315631761891474714841363737102629275177212121113022343610622310041000035K1.9
20160516K4.8K3.5K1.5K1.2K858442712862559590338379799143291196781019217414284127886776264115273633213311203627292291514131381191089764411115213101310795861344464321203402536431020104021101011035K1.9
20160412K4.4K3.5K8371.2K870493836426521506368317329138149153727977140117507562547443562829293929202122382519716131413991413781031635761479101210787269125983952442509234012453224012311001028K1.5
20160311K3.7K2.5K1.8K1.5K947385745486643604381409851851701397482691376057229708279346938372439212625293622243112141016131951851077171110515593615794594155633013134393353202213233010101101028K1.5
20160210K2.2K2.2K7521.4K8614726464595255793023576022517412565683811377815487636339352044283214212820193513251516198261098891388151447926561161021947012629225