This website is not affiliated with or endorsed by the Wikimedia Foundation, the nonprofit that maintains Wikipedia and manages the Wikipedia trademark.

Views until June 2015 for desktop come from stats.grok.se and include bot pageviews, while those from July 2015 are from the Wikimedia REST API and exclude identifiable bots and spiders (but may still end up counting many views by bots and spiders as legitimate human views). Views for mobile web, mobile app, desktop spider, and mobile web spider are from the Wikimedia REST API and available starting July 2015. Mobile web and mobile app views from July 2015 onward exclude identifiable bots, and "desktop spider" and "mobile web spider" are basically all the bots/spiders (excluding Wikipedia's own, which get identified as bots).

Permalink URL: https://wikipediaviews.org/displayviewsformultiplemonths.php?tag=Pages+created+by+Vipul+Naik+in+2006&allmonths=allmonths&language=en&drilldown=desktop-spider

MonthViews of page SIPCOT IT ParkViews of page FIITJEEViews of page Creamy layerViews of page SiruseriViews of page TeynampetViews of page C. S. SeshadriViews of page Quasiconvex functionViews of page Kishore Vaigyanik Protsahan YojanaViews of page State Industries Promotion Corporation of Tamil NaduViews of page Subjective units of distress scaleViews of page Madhya KailashViews of page Institute for Financial Management and ResearchViews of page Old Mahabalipuram RoadViews of page Madhya Pradesh Bhoj Open UniversityViews of page Perfect setViews of page ReachbackViews of page Bhaskaracharya PratishthanaViews of page Cremona groupViews of page Norm (group)Views of page National Board for Higher MathematicsViews of page Tube lemmaViews of page SQ-universal groupViews of page Component (group theory)Views of page Residually finite groupViews of page Locally finite groupViews of page CA-groupViews of page Extremally disconnected spaceViews of page Indian Association of Physics TeachersViews of page National Standard Examination in ChemistryViews of page Harmonic polynomialViews of page FC-groupViews of page Association of Mathematics Teachers of IndiaViews of page Metacompact spaceViews of page Pure subgroupViews of page T-group (mathematics)Views of page C-normal subgroupViews of page Supersolvable groupViews of page Factor of automorphyViews of page Orthocompact spaceViews of page Resolvable spaceViews of page Cotorsion groupViews of page Pseudocompact spaceViews of page Jeanne SaferViews of page Power automorphismViews of page CN-groupViews of page Afterburn (psychotherapy)Views of page Abnormal subgroupViews of page Rational representationViews of page National Mathematics Talent ContestViews of page Retract (group theory)Views of page Riemann formViews of page Bitopological spaceViews of page Imperfect groupViews of page Collectionwise Hausdorff spaceViews of page Slender groupViews of page Hemicompact spaceViews of page Characteristically simple groupViews of page Grosshans subgroupViews of page Perfect coreViews of page Shrinking spaceViews of page Malnormal subgroupViews of page Mathematical Olympiad CellViews of page Complemented groupViews of page Pronormal subgroupViews of page Door spaceViews of page Critical groupViews of page Ascendant subgroupViews of page Seminormal subgroupViews of page Locally Hausdorff spaceViews of page Supercompact spaceViews of page Polynormal subgroupViews of page Realcompact spaceViews of page Class automorphismViews of page Absolutely simple groupViews of page Paranormal subgroupViews of page Toronto spaceViews of page Contranormal subgroupViews of page Parafree groupViews of page Volterra spaceViews of page Paranormal spaceViews of page Capable groupViews of page A-paracompact spaceViews of page Pseudonormal spaceViews of page Radical polynomialViews of page Observable subgroupViews of page Alternating mapViews of page Mesocompact spaceViews of page Feebly compact spaceViews of page Conjugate-permutable subgroupViews of page Strictly simple groupViews of page Metanilpotent groupViews of page Conjugacy-closed subgroupViews of page Transitively normal subgroupViews of page CEP subgroupViews of page Algebraically compact groupViews of page Stability groupViews of page IA automorphismViews of page Centrally closed subgroupViews of page Fully normalized subgroupViews of page Special abelian subgroupViews of page National Standard Examination in PhysicsViews of page Weakly normal subgroupViews of page Semipermutable subgroupViews of page Thin group (combinatorial group theory)Views of page Representation rigid subgroupTotalPercentage
2019095023362491191231881431441051211579964721017612075706650635157597461655664865064584732674751504943814664475345494232394029474042385737534143443435543843424347323936375438302838393835294629324434323637282739291922381024222306.6K1.7
201908566245248162154200134306121146187120778310870148815959596246595585545366857753573442235339333936441083754423635613039373424364238353945313527334026313351384946273327353226333834293233272924263427292830272829281222241421262306.5K1.7
2019075622133011641312321561941261331341297097116888091655972404456528371428161977253434128635846394037604258423770823543432528374047304337342631233528282327322942532828382828322639302928212824264922273031272238241423301520211606.4K1.7
201906531280306169117137188251721897811568741171127610079757150494968865038636581674844602954624851524065624142335937424722272938454146405030493841254332284136385239373237344032252919343137253521352730255725253022132221523232106.5K1.7
2019055262633641741521751912809914214717784791481058586965871434459669251416271794058415234715339534241633853473952433242463236434234354652414528444546413545394551363439453836282536422936342934414533352643322738291723291624302506.9K1.8
2019045084304701762.6K15319936313513814815088851151038574765866415476648562455869795147425726464549334341663854503647443235393025384242375151323032354545342637303650282923333042312536362733272724303023192937292230191927231019222009.4K2.4
2019035307784911772241532452211361281471698110411011012483865888426264628056506968925360517245456846455347684684724748434540413635456552484643464836515140414437384050393943384537345140444040342836313234304141382838261435301528282408K2.1
2019024296132931691461671691981121251441467910710496109611027072376669495654396173675360435139484750446640394244444435423746593328474248384748413333345241333634303939342734373234293135332338343028263125302630302938291431301329231706.8K1.7
201901480314494180179128226197118135153133781001299995110969591586372605768506658897464515850525340335551353847354262496149593532466153346257533948425955314832313948403637394138364031364436362529213538363448323348321337281025232507.3K1.9
20181245038333916214917119233111915412314963108122112111106718898484864667358508465906752494763625644426172505346493669434855655826365658386155484537405041304633423764385134413541554135413043372836253536412644275441231827291234202707.4K1.9
201811421503215183175175201197142154142139631101451211248588708256568061565463727688734655617864664437675545624262556152445252353342494336476848493532434349523433385450433652353832424439295838163432364043294047603627836361022222207.4K1.9
201810474365310218156183194196142135133126561051251371198674787761456152635949546293644645674450524934463936453538464950383436334340424847375031513135355332312831343040282829353036343328303440113226243329224421272626112828922192506.7K1.7
20180943730230723817919615721918414411715560108114138107101859468934769845361667678917750566158436445437646414934405051624343492659364144463938533443433640354433464134414439374641343432303835452032313329313350222633281230294925202307.2K1.8
20180857230642725816126718022118916013618063110127117105121100109797448577259465676806781569150474953565254525657574140496848525123473847494510342534741414542363143433942484134413745523440354440442227293135322531263441391531341915263407.8K2
201807552261321181132275165310175160107171708614510411071686257553851445657378351475836735434564645544541403243333534563055332536332938253628412940374138272833392524273735292949342528232033231724312236241724202437241231241421281906.5K1.7
201806597282466183182463290176289151142150761121241017363745959733255605051335959395048694833604644464243364640413540563447353338334436403644543043324032263138383533392931382638283427213638331431342635312827232040214522161717241407.2K1.9
201805613289318307151373205140235132151142821091051139193659374714050587552355767487342506659675538396454424646383754585153373158444137423228375146314448324937363231343842363334264134343930401830353035262629303135323323291519286007.3K1.9
20180479830447025221833823715630912521925460129125968363797873734853547453446348425849474449414039475358374750562835423246311756373137284330274039313828272331393546282823322544281926332131241818262925252530272629212216151014201407.4K1.9
2018034023314052321623811751663381482051606612410715189821469161935555706056308074645748575557525346575638455231565157402843412660373739563435364650424553343146474242435736373043353840302934401041363335482836252737284425281234281707.6K2
201802665353585299198421281128388260149234891301241341097780104968138555710264796353638242497251565755626540433946574453653742355552523737582839314558386050383840343436482936362643363745262628391434304736302626352727283823211133301608.5K2.2
20180173025840929018145720114143866218331320912612914010690959967976169748473628858697759519061596947876844486359473851574650457153484252455641483552395662344444424239314942473265403548442540402537324638352635283239303235262732292109.4K2.4
20171278829140328919044316116641187830124830011610714313887939384120808777954645259595470485474754663657258445275435455604658384673625450526539505057584544554054495243425050484951504933683843355919413549465233313537393152353414383328011K2.8
2017116463242942992192942411703177562332712811321371641351019594751045087715665508183597467547465495875678058366062474559414853526454525044763748386173445043375254463853604050583247504342423138512850443536403433524135384823331426282609.5K2.4
20171053820245726818720326116327231421122538512413516710081928659974766675049556372538053725569545760564839425044404153505049375666394341664543495341363842354346414137454445684042464329373035481638364130373729323338283820281230302208.3K2.1
201709441168219422186290203136183136285286387139117147140806510964128415967614455595143795863757537575963374363554955363743493289585745434946273933423434364540364640363644464037473339333241342427153832243035252133172533282324626242907.8K2
201708373175272368189254204213181170187279436121147206135102111118681675662747661547574669461778394518770645756446647455260707957365967515548813555556646502948386152595339624839373950474145383935532245373466392630463428354629331231392608.7K2.2
201707220232225419253309198292176119211173282564142141117928291741174966837978526770667269617964575185695949505053513848655670696840449439594232385284355649564452503947393933483956373050464051354140344534294736463731334330291426213308.6K2.2
2017062202291872531802552631481731551551442021472072101371121359776136601346973767886997578917184934974836457504971655759593769516063764961546057673753523933643749625749376544443043466140353510440342142453733453522353219514633342427382208.3K2.1
20170522830124723221729130217530827916826922816325432517511415613292174629111292817412110989104103104125147569910411690535610450728967507564661149575695910555735890737755715883737461537262774968746866555141347520675344494937404538384577363519464533011K2.7
20170437441234232533837621621545252518544820033825857124521228826112043487102214118179902432321222041551832382946518924822316785622414410894135119147108512341931201188923644875920912212744158641231041401215511215413583991011539174553833131231347548103124482834523239141306023594833017K4.3
20170312914525326022823623616127416919419419513411411713169976588385848615250732953394440653245573632494343413663493833364237573941382944264036403644443532402734313633303132345643363240303327282926292823283136272528272733242624312006.6K1.7
20170224183237194218251172159204198156185185145989412367695870566668567762683554505064434158555354504257443955394841384745443952354540484546494540444441553241403636373533344926553727354042322233352721263235292730302522322130251606.7K1.7
201701162402233229198216199239237151188198269176116911231275473836792776468801094263495598564070534746514770534862384855406144493943575835324851593750374838584243393943253952574941393738445147364128363436324337303128322739278429302507.7K2
201612118294200250243259194222252181191160242160111831468752577347778090701187582394953797942596150565744613533595753363447454267393441484244424832484441375336362939383839413139293631434030343642293140333935373136302730342810332294407.4K1.9
2016111811701832191772321.2K235276121289206253108209129172971457610947769110581127203388964471281137782955310963100109425592528247307455675749104565441687071404970504862605147574345585835623736465350525830302374635363842513335324336432850322427010K2.6
201610197406264219153262392343243173228242243187236952131141659514064731151227811464571128346185142100959665151100108154516298489150667859657553116596852826588355183564285685963725955388159724140606151546428153354825303975383230285238342953272528010K2.6
20160918728924024119223019519622297264189220208118891277966738657809354636083726868587982637262696664626650636761625253654153705359586249625392505660424864113495563434758544761504552395244464223442564850584662523743404353477145422708.6K2.2
2016081752161702151972601642451578620213424014911373158827561835788936360665171454676671034855633950514449565464619146335641553640413555274849533448634040785336413843518064423843343043954259305728383539294239387146453742364540323207.4K1.9
2016071762111932262111921952211108618012119415711395133585962122447271765659693644476367534757535750504361444549654443324645472747424346384549594140554035554338384349414341484036374336474536382639413937383735354126343231305433262906.8K1.8
2016061245062352461702042282579498195118193133131851441184782825486815262795830435576756239551226142415071543551516144295041634041325080423735654755476344473336413542384736424342252744383342